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Many of the most interesting phenomena observed to occur in the flow of rotating 
and stratified fluids past obstacles, for example eddy shedding and wake 
unsteadiness, are due to separation of the boundary layer on the obstacle or its 
Taylor column. If the Rossby number of the flow lies between Ei and E ( E  is the 
Ekman number and the Burger number is small, the structure of a viscous shear 
layer of width Es on the circumscribing cylinder of an axisymmetric obstacle controls 
the inviscid flow. The surface boundary layer is not an Ekman layer, but a Prandtl 
layer, even a t  small Rossby numbers. As the slope of the obstacle a t  its base 
increases, the nature of the inviscid motion is altered substantially, in the rotation- 
dominated regime. We show that, for sufficiently large slopes, the flow develops a 
small region of non-uniqueness external to the column, simultaneously with the 
separation of the narrow band of fluid flowing round the base of the object. 

1 

1. Introduction 
Over the past three decades, much effort has been devoted to the understanding 

of rotating and stratified flows over obstacles, both as they occur in nature in the 
atmosphere and oceans, and also as they are observed in laboratory situations. 
Baines & Davies (1980) have reviewed much of the work related to laboratory flows. 
Experimental programs for such flows were long rare in the literature, with Davies’ 
(1972) paper the most definitive for a long time. More recently, Boyer and coworkers 
in Wyoming have made a number of careful experiments, reported for example in 
Boyer & Biolley (1986) and Boyer et al. (1987). The combined effects of rotation and 
stratification in these papers lead to a variety of interesting phenomena like eddy- 
shedding, separation, flow unsteadiness, etc. Hogg (1973), McCartney (1975), and 
Huppert (1975) presented theoretical models of the effects of stratification on Taylor 
columns. In  each of these treatments, the height of the obstacle is small, and of the 
order of the Rossby number. More recently, Cheng, Hefazi & Brown (1984) have 
studied the far-field disturbances that arise in an unbounded rotating, stratified flow 
in the inviscid limit. Foster (1979a, b, 1982) has given solutions for slow flow of 
vertically confined fluids past two-dimensional obstacles, relieving the assumption 
that the obstacle height is small. Merkine (1985) has recently studied the flow past 
a vertical cylinder in a confined rotating, stratified fluid. The differences between his 
analysis and the present paper are discussed in detail in $2. 

This paper presents solutions for rotating and stratified flow past large obstacles, 
since Boyer & Chen (1987) quite properly point out that laboratory studies must be 
done with obstacles of large height, in order to simulate what happens in orographic 
flows in the atmosphere. Several parameters, the Rossby number, Ekman number, 
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Prandtl (or Schmidt) number, and Burger number, characterize the flow. We 
investigate the flow with a view toward the possible separation and the formation of 
eddies or unsteadiness. The case discussed herein is for small Burger numbers, that 
is, the flow is dominated by rotation effects, with the stratification effects relatively 
weaker. Let the fluid velocity past the object be U ,  and the fluid layer depth be 
h ;  v is the kinematic viscosity, and Ap*/p: is the dimensionless density difference 
across the layer. If the rotation rate is denoted by 52, then the Burger number, 
S = gAp*/(G2p,*h);  the Rossby number, Ro = U/Slh; and the Ekman number, 
E = v/52h2. The restrictions on the following analysis are: 

S = ~ ( l ) ,  RO = O(SEi), US 9 Ei, 

where u is the Schmidt number. It follows that the Rossby number is small compared 
with Ei. It is well known (Walker & Stewartson 1974) that for an homogeneous 
rotating flow, the flow is attached until Ro is a particular order-one multiple of Ei. 
What we discover here is that, in spite of the relatively small amount of stratification 
with S small, as the slope of the obstacle where it meets the lower wall increases, some 
difficulties arise in what was a well-behaved solution a t  moderate slopes. 

In the parameter range under study here, the flow away from the obstacle is 
inviscid and obeys a coupled pair of nonlinear equations whose solution involves 
matching through a thin Ei layer surrounding a ‘Taylor column’ to a flow over the 
top of the obstacle that is also nonlinear, owing to the large height of the object. If 
h = &S/Ro, then the problem is formulated for arbitrary values of A. Relatively 
large values of h correspond to larger stratification effects, and small values to larger 
rotation effects. 

The physics of the flow in the parameter range under study here is relatively 
simple. In front of the obstacle, suppose the fluid moves laterally. The lateral motion 
causes fluid to be pumped out of the Ekman layers. That vertical interior motion lifts 
the isopycnics of the linear stratification, which, by the energy equation, is balanced 
by horizontal convection of a baroclinic density perturbation if h = O( 1). That 
density perturbation, since it is baroclinic, produces additional vertical vorticity 
which increases the lateral motion (thermal wind!), and so on. 

A crucial point of this paper is in $3, where we point out that the boundary layer 
on the surface of this large obstacle is not an Ekman layer (unless the slopes are very 
small), because the production of new vorticity out of the baroclinicity of the flow in 
the layer adjacent to the object dominates the diffusion of vorticity off the wall. In 
such a case, the boundary-layer equation is the Prandtl equation even at these small 
Rossby numbers, because of the inherent nonlinearity of the density equation. The 
linearization of this equation that leads to Ekman layerldensity layer combinations 
always requires small slopes or fortuitous shapes for which the nonlinear terms 
vanish identically (see Merkine 1985, for example). In fact, for reasonable values of 
the Prandtl (Schmidt) number, the Ekman layer is recovered when the surface has 
slope Ei. 

In  $4, the resultant boundary-layer structure leads to the equations for the outer 
flow, in particular the vertical shear. Those solutions are joined across the 
circumscribing cylinder of the obstacle, r = a, by means of conditions deduced in $5 
from the structure of the nonlinear Ei layer mentioned above. It is then possible to 
consider solutions in particular cases. 

The large-h flow, discussed in detail in $6, can be found easily only for small 
obstacle slopes, owing to the role played by the surface boundary layer. It is Stokes- 
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like (though the Reynolds number Ro/E = S/& may be large !), with a non-uniformity 
in the far-field resolved by an Oseen limit there. The Oseen solution shows a narrow 
wake far downstream, with width (Ax): (small compared with x for x 9 A )  ; x is the 
streamwise coordinate. 

For small values of A ,  the flow is strongly reminiscent of homogeneous flow past 
an obstacle ; the pressure, which is a stream function for the geostrophic flow, is an 
harmonic function away from the Taylor column wall. However, there are narrow, 
rotational shear layers (where surface friction, but not lateral friction, is important) 
that sandwich the Ei layer, as shown in detail in $7. The layers have widths Ah and 
At on the outside and inside of the column wall, respectively. All of the vertical 
velocity shear is confined to these regions. The vertical structure is intimately tied 
to the stratification, but these layers are neither Stewartson layers nor buoyancy 
layers (Barcilon & Pedlosky 1967). 

In $8, we explore the question of what happens to the flow examined in $7 for 
h < 1, if the object in the flow has very steep sides at its lowest point. For a spherical 
cap, we show that the solution structure is self-consistent for slopes up to size A d .  For 
slopes larger than A-;, but smaller than A-i, a tiny region of non-uniqueness develops 
in the outer shear-layer solution near the obstacle shoulder (the locations on the 
object where the surface normal is perpendicular to the upstream flow direction). At 
the same time, the boundary layer on the sloping surface under the interior shear 
layer separates under a severe adverse pressure gradient. 

It is interesting to compare the nature of separation as it occurs here with what 
happens in the non-stratified case. Walker & Stewartson (1974) note that, for values 
of R o / E ~  beyond a particular value, the outer shear layer on the Taylor column 
develops a point of zero shear at the rear stagnation point - so presumably at larger 
Rossby numbers the flow round the column separates from the top to the bottom of 
the column. On the other hand, in the case investigated here, the only problem that 
arises external to the column is the non-uniqueness in the outer shear layer; the 
separation, per se, occurs over the bump itself, and then only in a narrow band round 
the obstacle at  its base. Having said that, it should be noted that the problem that 
arises in the exterior shear layer that leads to the non-uniqueness is not unlike what 
occurs at  a point of zero skin-friction in a boundary layer, viz. the downstream 
variable ceases to be time-like and the problem becomes ill-posed. Clearly, proceeding 
to a proper solution in this case, and also for objects with still larger slopes, requires 
solving for the external flow together with the boundary layer, simultaneously, in 
ways that are now beginning to be understood (Smith 1985). 

So, in summary, for strongly stratified flows ( A  B l ) ,  the nonlinear surface layer 
makes the entire Ro Q 1 problem nonlinear for any objects but those with very small 
slopes; rotation-dominated flows ( A  Q 1) are fully attached, unless the obstacle slope 
at its base is larger than A-;. 

So the requirements for non-separated flow, in terms of the object slopef’(a), are 

Finally, it seems that most workers in this field have regarded the Burger number, 
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S, as the primary determiner of the relative importance of rotation and stratification. 
The work presented here suggests rather that  the parameter 

Ei 
S-  

Ro 
is the important one for low-Ro flows. 

2. Formulation and outer expansion 
Consider a stratified fluid confined between horizontal, parallel planes, rotating 

about their common normal a t  angular velocity Q, and flowing a t  speed U past an 
obstacle located on the lower plane (cf. figure 1). The planes are separated by a 
distance h. The non-dimensional Boussinesq equations are 

v - u  = 0, (2 .1 )  

E R o ( u . V ) U + ~ E ~ X U + V ~  = cEV2U-pk, (2 .2 )  

Roa 
E 

--u.vp = v2p,  

where the velocity has been made non-dimensional with U,  lengths with h, and the 
dimensional density p* has been written as 

P* = Po* -k Ap*p, 

where Ap* is the density difference across the planes. Ro is the Rossby number, 
U/Qh, and E ,  the Ekman number, v/Qh2. The measure of the relative importance of 
the stratification and rotation is S = gAp*/Q2p,* h, and for convenience, the c par- 
ameter in the equations is Ro/S. (This parameter S differs from that of Davies’ 1972 
by a factor of four.) a is the Prandtl or Schmidt number, depending upon whether 
the density differences are due to  thermal or salinity variations. It is convenient to 
use components for u in a cylindrical polar system; u in the radial ( r )  dircction, v in 
the azimuthal direction (e),  and w vertical (2). Hence the z-direction is parallel to $2, 
and k in (2 .2)  is #2/lfil. 

We suppose that the obstacle has shape given by 

z =f(r) for r < a, f(a) = 0 (2.41 

and has finite slope everywhere ; in particular, If’(a)l is finite. 
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Far from the obstacle, we take the flow to be uniform and the densitv to be linearlv 
stratified. Thus 

’+”} for r - too .  
p+-2 

Other boundary conditions are imposed a t  the solid surfaces, 

1.z =f, r < a, 

p = - 1  on z = 1 ,  (2.7~) 

p = O  on z = O , r > a ,  (2.7 b) 

or 

p = g ( r )  on z = f, r < a, 

ap /an=O on z =  f, r <  a. 

(2.7~) 

(2.7d) 

g(r)  is the density distribution on the obstacle, and n is a normal to the 
obstacle surface. Where (2.7 c) is concerned, arbitrary g ( r )  causes convection near 
the obstacle so that the flow is a combination of that due to the uniform flow past 
the obstacle and that due to thermal or haline effects a t  the surface. Since the 
purpose of this paper is to study the nature of the forced flow, and not that due to 
obstacle heating, say, we make a special choice for g(r ) ,  so that the boundary 
condition is 

It is also true, of course, that for fluids stratified by salt in water, for example, the 
appropriate boundary condition is (2.7 d) ; however, because such a no-flux condition 
alters substantially the nature of the boundary layers, no further consideration will 
be given in this paper to solutions under (2.7d). Hence, under (2.8), the exact solution 
u = 0,  p = --z of (2.1)-(2.3) satisfies all of the density boundary conditions (2.5b), 
(2.7), and (2.8). The implications of this assumption for the boundary-layer structure 
near z = f will be dealt with in $3. 

In  proceeding to a solution of (2.1)-(2.3), (2.5)-(2.8), we suppose E ,  Ro, and E are 
all small, so that the expansion proceeds as 

p = g(r )  = - f ( r )  on z = f, r < a. (2.8) 

1 u = u , + E u z + E 2 U 3 +  ..., 
p = po+€pl+E2p2+ ... ) 
p = po+€p1+E2p2+ ... . 

The first term in (2.2) introduces a term into the (2.9) series of O(eRo) ; if that term is 
to be small compared with the third term in (2.9), we require Ro 4 E ,  or S 4 1. In 
addition, later in this section, we suppose that E = O(Ei), which means Ro = O(SEt), 
and hence, Ro 4 Ei. The negligibility of the viscous term of (2.2) in the (2.9) solution 
requires E 4 E ,  so Ro 4 SE. Hence, the Rossby-number range for the validity of this 
analysis, and the S restrictions as well, are 

SE 4 Ro 4 Ei, S 4 I .  (2.10) 

The density transport equation imposes additional constraints on the flow, which are 
no more severe than that the PBclet number be large, which in the notation of this 
problem requires simply CTRO & E ,  or in terms of the Burger number, 

CTS 4 Ei, (2.11) 
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so if (r is large. as for salt in water, this is easily satisfied; for (r = 0(1), there is a limit 
on the smallness of S. 

Proceeding with the substitution of (2.9) into (2.1)-(2.3) leads to the first-order 
equations 

whose solution, subject to (2.7)’ is 

(2.12) V p , + p , k = O ,  ~ , * V p , = 0  

pa = -2, w1 = 0. 
To next order, we have 

V.Ul = 0 

(2.13) 

( 2 . 1 4 ~ )  

2 k x u , + V p l + p l k =  0, (2.14b) 

(u,.V)p,-w, = 0, ( 2 . 1 4 ~ )  

from which it is clear that p ,  is a stream function for (ul,wl). Finally, the ( )2  

momentum equation is 
2 k x u 2 + V p , + p 2 k  = 0 ;  (2.15) 

the z-component of the curl of this equation is 

(2.16) 

Using (2.14c), (2.16) leads to 

whose general solution is 

since p ,  is a stream function for u,. Comparing (2.9) with upstream conditions (2.5) 
shows p 1  --f 0 for r --f 00,  but p ,  + - 2r sin 6. Therefore, F = 0 and the equation for p I  
becomes 

This work differs from Merkine’s (1985) a t  just this point. He obtains, for the p ,  
equation, a Laplace equation for a2p,/i3z2. Thus, his analysis reflects a diffusion- 
dominated flow, and this work is convection-dominated. The difference appears in 
the appropriate parameter restriction here, (2.1 l) ,  us. Merkine’s requirement that  
crS = O(E2). This analysis should be more appropriate to laboratory situations in 
which Ap* is due to salinity variations, because (r - 1000 in such a case. For 
Merkine’s results, S would have to be - in any of Boyer’s experiments, for 
example. Here, S-values of 0.1 can fit into the parameter restrictions if Ro is small. 
The general solution of the p ,  equation is 

p ,  = A(r ,  6 )  z+B(r,  6 ) .  (2.17) 

Noting from (2.17) and (2.14b) that  
p 1  = - A  

we see that ( 2 . 1 4 ~ )  gives w2 = -u, .VA,  or 

1 1 B(A,B) 
2 r  a(r ,6)  w2 = ---. 

(2.18) 

(2.19) 
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The interior dynamics imposes a rather strong structure, (2.17)-(2.19), on the flow, 
but leaves the functions A and B arbitrary. That arbitrariness is removed by the 
boundary layers above and below the flow, which are analysed in the subsequent 
section. 

The most interesting case occurs when the vertical velocity driven by the Ekman 
outflow is of the same order as the ( )2 perturbation in- the (2.9)-series. That 
requirement leads to Ei = he, (2.20) 

where h is now an O( 1) parameter. Foster (1979 b) investigated such a flow over a two- 
dimensional ridge. 

Such a balance, making h = 0(1), has a simple physical interpretation. Suppose 
that the fluid flows laterally in advance of the obstacle (upstream). That lateral 
motion causes fluid to be pumped out of the Ekman layers, lifting the isopycnics of 
the linear stratification, which, to hold the density of each fluid particle fixed, causes 
a baroclinic density perturbation. This baroclinic perturbation creates new vorticity 
which turns the flow, giving rise to more Ekman pumping, and so on. The process 
feeds on itself, and would seem to imply upstream influence in such flows. 

3. Surface boundary layers 
There is no question that the Ekman layers exist on horizontal surfaces in this 

parameter range, and also on z = f ( r )  forf’ sufficiently small; however, iff’(r) is O ( l ) ,  
the boundary layer is substantially different, and not in general an Ekman layer. 
What happens here is the following: near the sloping surface of the object, the 
pressure gradient must be parallel to that surface. That portion of the gradient that 
is vertical is balanced by the buoyancy term; the radial portion of the gradient 
balances the Coriolis force due to azimuthal motion. Hence, there is a simple 
geometrical relationship between the azimuthal velocity and the baroclinic density 
perturbation. This relationship must exist unless the surface slope is so small that the 
vertical pressure gradient component is negligible by comparison with the radial 
viscous forces - in that case an Ekman layer arises. The derivation given below seems 
the simplest. 

Now, the form of the bondary layer on the surface, since it turns out to be 
nonlinear, depends on the magnitude of the velocity vector in the inviscid flow above 
the surface. Here, we must anticipate the results found in 54, which show that 

aA- 
ae u1 = - i ( z - f ) - ,  v1 = 

Thus, to match to a layer of width 6 in z- f, we see that u is 0(6), but v has both O(6)- 
and O(f’)-terms. This is important in what follows. 

Note that the x-component of the curl of (2.2) is 

where w = k- (V x u) and nonlinear terms are neglected for Ro sufficiently small. If we 
put p = pofp ‘ ,  where po = - 2 ,  into the energy equation (2.3), then eliminate awlax 
from this equation and (3.2), we obtain 

(3.3) 
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Apart from the neglect of the nonlinearity in (2.2), no other approximation has been 
made in (3.2). It is convenient for analysing the boundary layers to write (3.2) in an 
( r ,  0,n)  system, rather than ( r ,  8, z ) ,  where n = x -  f ( r ) ;  the new system is clearly non- 
orthogonal. Under such a transformation, (3.3) becomes 

where w‘ = ( l / r )  (rw)r-  ( l /r )  uo, where the r-derivative is now understood to be taken 
at fixed n and 8. If we now make a boundary-layer approximation in retaining only 
n-derivatives in V2, (3.4) becomes 

a 
-[[u.Vp’] = 
an (3.5) 

where Ro has been replaced by SE. In  this coordinate system, note that the nonlinear 
term in (3.5) is 

ap/ ap/ I -ap/ u-Vp’ = u-+--+[l+ (f ) pw-, 
ar r a8 an (3.6) 

where cij = (w-f’u)/[l+ (f’)2]4 is the velocity component normal to the surface. The 
continiiity equation (2.1) is given by 

(3.7) 

The momentum equations in that thin layer, on eliminating the pressure, take the 
following form : 

an 
(3.8a) 

(3.8b) 

where we have written, for shortness, D for [ 1 + (f ’)2]i a2/an2. From these equations, 
i t  is evident that so long as, for the moment, we take the layer width to be larger than 
the Ekman width, E ,  the ‘thermal wind’ terms on the left dominate. In addition, 
notice that, provided the slope,f’, is much larger than the layer thickness, 6, the first 
two terms in ( 3 . 8 ~ )  are dominant, and integrate to  

26 
p‘ = -v. 

f’ 
Also, then, (3.8b) becomes 

az; l a w  -+-- = 0 
ay rat3 ’ 

(3.9) 

(3.10) 

where y is now a scaled boundary-layer coordinate, n/S, with 6 yet to be found, and 

(3.11) 
6 ”  
f’ 

u = --u. 

Combining (3.9) and (3.10) with (3. l l ) ,  we obtain the boundary-layer equation 

(3.12) 
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The subscript e refers to conditions at  the boundary-layer edge. Notice that, since the 
leading-order matching conditions and boundary conditions are satisfied for w and p ,  
there is not need for any other boundary layer-this is a combined thermal/ 
dynamical layer. The only restrictions, to be checked a posteriori, are that the 
thickness, 6, be small compared to the slope of the surface, f’, but large compared to 
the Ekman thickness, E .  

Equation (3.12) is the familiar Prandtl boundary-layer equation. The thickness 6 
depends not only on h and E ,  but also on the local slopef’(r) and the size of US. It 
is also very important that (3.12), notwithstanding (3.9), does indeed include effects 
of viscosity on the fluid momentum; recall that we began with (3.2). In what follows, 
we explore the various forms of the volumetric flow rate, depending on the 
parameters of the problem, for sufficiently largef’. We shall have to reinvestigate this 
limit for small slopes. 

If the surface slope,f’, is O( l ) ,  then so long as US is O(1) or smaller, depending on the 
size of u, we may choose S = h(e/aS); in (3.12). Equation (3.10) indicates that the 
volumetric flow rate in the radial direction is given by 

f ’  = O(1) 

(3.13) 

So the flow rate is O(E) ,  for US = 0(1) ,  just as it would be for an Ekman layer, but 
of course the dynamics are radically different. If, on the other hand, u is O ( l ) ,  then 
the flow rate is clearly somewhat larger. 

I f ’ l+  1 

Now the matching condition for w in (3.12) is v + we for y I‘ 00. Noting, from (3. I), that 
we = OJlf’l), and using If’(a)l as characteristic of the scale off’ for all r ,  for If’l+ co, 
S = hs?lf’(a)lt, provided that S is not so small that the l/crS-term dominates the ( f ’ ) 2  
term. Examination of the equivalent of (3.13) in this case shows that the flow rate 
scales like A%1f’(a)l3. These scales are crucial to the discussion in subsequent sections. 
Thus, 

P= W’(a )13  Q (3.14) 

in symbolic form, where Q is the 0 ( 1 )  integral of (3.12), which is then valid for 

US 9 l/lf’(a)l’. 

f ’  = O(1) 

As indicated above, the arguments leading to (3.12) fail unless f’ is larger than the 
boundary-layer thickness, 6. The thickness of the small-f’ layer is strongly dependent 
on the size of U .  If the fluid is essentially non-diffusive, then (3.12) shows that S = 
A(elj’(a)l)~. In such a case, the flux is order ef’. The requirement thatf’ be much larger 
than the thickness, then, requires that If’(a)l 9 Ei - so the Ekman scales reappear 
when f’(a) = O(E4). However, this case seems not very relevant to geophysical or 
laboratory situations, since it requires that US 9 l/lf’lz - not very likely for small S! 

On the other hand, if the US-term is dominant on the right-hand side of (3.12), then 
the thickness, 8, turns out to be h{e/(mS‘lf’(a)l)}i, and the flux law becomes 

(3.15) 
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again written symbolically with all of the complication buried in &, which is O(1). 
However, the requirement that f‘ be large compared with S is much more restrictive, 
hence the two constraints on this small-/f’(a)l flux law, (3.15) are 

I f‘(a)l < (l/uS)i, Ifl(a)l 9 hf(s/osS)k (3.16) 

So, the restrictions are severe, and (3.12) fails, for small slopes, a t  f’ values of Ei, for 
ass of order one. 

With the choices for S as specified above, then, (3.9) and (3.11) become 

(3.17 a )  

(3.17b) 

where 6 = -v/f’(a),  and H ( r )  depends upon the f’ parameter range, viz. 

H ( r )  = 1,  If’(r)l 4 1, (3.18a) 

H ( r )  = [1 +{f’(4121 [1 +aufl{f’(r))21, If’(r)l = W), (3.18b) 

H ( r )  = [f ’Wf ’ ( 4 1 4 ,  If’l 9 1 * (3 .18~)  

Actually, of course, the quantity H may be absorbed into the definition of the y- 
coordinate, and clearly has the effect of providing some radial variation to the 
boundary-layer thickness. The obvious thing suggested by (3.17) is the possibility of 
separation effects in these flows. 

3.1. Recovery of the Ekman structure 
As just noted, once the slopef’ drops below 6 in magnitude, (3.16)-(3.18) above are 
not valid. In  particular, note that rather different structures occur for the two cases 
noted above, namely large values of US, or order-one values of that parameter. It is 
clear from (3.8) that  the viscous terms do not enter, to leading order, if S is bigger 
than 6 (that is, Ei) .  So, in the ‘non-diffusive ’ case (US % l), where we noted the above 
scalings fail a t  f’ = O(c) ,  the layer for f’ in this range is an Ekman layer, though 
suitably modified for baroclinic vorticity production. We do not explore this case 
further, since it has little importance as noted above. 

For the small-f’ case noted explicitly above in (3.15) and (3.16) and for which US 
is order one or smaller, it is evident from (3.8) that once f’ = O(S),  the layer is not yet 
necessarily an Ekman layer iff’ is still large compared with Ei. Indeed, in this case, 
writing w = 85, and p = q? as required by (3.1), ( 3 . 8 ~ ~ )  becomes 

(3.19) 

which may not be integrated, as in (3.9) previously, to show that, on the surface, 
when p” vanishes, so does v”. In fact, satisfj-ing p” = 0 a t  the surface means, in general, 
that v” is not zero there. Thus, there is a need for another (thinner) layer to satisfy no 
slip. That layer is a conventional Ekman layer, with width s as usual. The density- 
layer equation, (3.5), is still appropriate a t  the outer layer. Choosing 6 = ( h 2 ~ / u S ) i ,  
and also scaling w by S2, we obtain, from (3.5), the density-layer equation 

(3.20) 
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and /T must approach -A-  for y f 00, with corresponding matching conditions on .Ci 
and 6 derived from (3.1). This structure persists for values off’ smaller than S, with 
the fourth term of (3.20), and the first of (3.19) absent. Notice that this boundary 
layer, in contrast to the one described by (3.17), is fully three-dimensional, 
incorporating convection in the radial direction - which is not present a t  larger f’ 
values. Further, nothing special happens at f’ values of order Ei - the double- 
structured boundary layer persists to f ’  values of zero. 

So, then, noting the layer width here, we see that for BS = 0(1), the Ekman layer 
reappears, not a t  slopes of order Ei, but rather a t  slopes with the (larger) value of 
E;/(rS)t .  

4. The A-equations 
The outer solutions presented in $2 satisfy density boundary conditions on the 

solid surfaces to leading order (cf. (2.7), (2.8), and (2.13)). However, the uI velocities 
slip over the surface and w2 =‘F 0 a t  the surfaces. On the horizontal surfaces ( z  = 1,  
z = 0, r > a ) ,  conventional Ekman layers exist ; p1 is taken to zero a t  the boundaries 
via a layer of width (E/oRo)i which is thicker than the Ekman layer. The layers 
are essentially decoupled. Thus, on these surfaces the velocity components from the 
interior flow of $2 must satisfy the conventional Ekman compatibility conditions, 
hence 

On the sloping surface x = f ( r ) ,  the situation is, as we have seen in $3, more of a 
problem. The component of outer flow velocity normal to the obstacle surface is 

If this fluid flows into the boundary layer, it leads to volumetric flow rates in the layer 
of order f’/(Ad) for f ’  = 0 ( 1 ) ,  and O(h2eI f’l+))-’ for If’l large. Since such a large flow 
rate seems impossible, we are led to the requirement that 

u1 = 0 on z = f ( r ) .  (4.3) 

Iff’ is small, on the other hand, the situation is quite different since, whenf’ = O(E$, 
the boundary layer is once again an Ekman layer, so the flow rate in the layer is O( 1) .  
In such an eventuality, (4.3) is replaced by a condition including Ekman suction. We 
leave such cases to subsequent work and proceed to the detailed analysis of the outer 
flow, first in r > a, then in r < a. 

4.1. Flow in r > a 
Combining the expansion (2.9) with the Ekman compatibility condition (4.1) and 
relating e and E as given in (2.20) leads to the boundary conditions on w2, 

w 2 = T A i V : p l  on z=L+’ 2 - 2 ’  (4.4) 

Recalling from $2 that there is no vortex stretching in the ( )2 flow so that aw,/az = 0, 
(4.4) indicates that 

(4.5) 

Substituting the solution (2.17) into this equation leads to 

Vt(A+ + 2B) = 0, 
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where A+ shall hereafter denote A in the r > a region. For convenience, let 
= --&4++#; then, V : $ = O ,  r > a  

so that (2.17) takes the special form 

p ,  = ( z - : )A++# .  (4.7) 

Equation (2.19) relates w 2  to A and B, so here it becomes 

However, (4.4) also gives an expression for w2 a t  z = 1 which, when combined with 
(4.71, leads to 

Equating these two expressions for w2 results in the transport equation for A+,  

w - _ -  - :hV:A+. 

So p ,  is obtained from (4.7), with A+ and # solutions of (4.8) and (4.6) respectively. 
Far upstream, (2.5) indicates that 

for r - tco .  $ - -2rsine (4.9) 

4.2. Flow in r < a 

Because of the large size of this obstacle, and the fact that the boundary condition 
(4.3) is a kinematic one, the form of solution (2.17) is considerably different from 
(4.7). I n  what follows, we first impose condition (4.2) to evaluate B in (2.17). Then, 
we construct an expression for the radial Ekman flux over the obstacle, and impose 
the condition that there be no net radial mass transport. That requirement further 
constrains the form of A- .  Finally, equating (2.19) to an expression for the fluid 
pumped out of the upper-surface Ekman layer results in an equation equivalent to 
(4.8), but for A- .  

Since u1 = - ( 1 / 2 r )  (ap, /M),  (4.2) is 

a 
ae - (B+fA- )  = 0, 

the general solution of which is B = - fA- plus a function of r alone, which must be 
zero to match to the boundary-layer solution; see (3.9). Then, (2.17) becomes 

p ,  = (2-f )A-9 
and w2, from (2.19), is 

f 'A-  aA- 
w2 = -~ 2r 86 ' 

(4.10) 

(4.11) 

Greenspan (1968, p. 46) gives an expression for the radial volumetric flow rate in 

p t - _ -  - ihs(u+v). (4.12) 

the Ekman layer. Over the upper ( z  = 1 )  surface, i t  is 
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On the lower surface, we write again the flux law for the boundary layer discussed 
in $3, and given in particular by (3.12), (3.13), or (3.15), but in a more generic form: 

fb = h2sq. (4.13) 

Since both u, and u, in the outer flow are proportional to &derivatives of p ,  and p,, 
respectively, their integrals from zero to 2n: in 0 are zero, i.e. no net radial transport 
occurs in the geostrophic flow. Combining, then, (4.12) and (4.13), the total 
boundary-layer flow rate is 

(4.14) 

Integrating in 0 on (0,27c) causes the last term in (4.14) to vanish identically, and 
substitution of (4.10) leads to the no-net-radial-flow requirement, 

(4.15) 

where ( A )  denotes the &average of A- .  The solution of this equation is that ( A )  = 
const./(l -f). As we know from the discussion a t  the end of 93, provided the object 
is rounded at its centre - that  is,f’(O) = 0, the boundary layer there will be, in fact, 
an Ekman layer; Greenspan (1968) notes that an axisymmetric swirling motion 
between parallel planes causes radial outflow in both Ekman layers, and hence is 
impossible since there is no source on the axis. Therefore, ( A )  must vanish for 
r = 0, and hence it vanishes for all r .  So the solution of (4.15) is ( A )  = 0. 

At z = 1, where there is an Ekman layer, (4.4) and (4.10) combine to give 

(4.16) w 2 - _ _  - :hV;[(1 - f ) A - ] .  

Combining with (4.11) gives the A -  equation 

(4.17) 

Thus, to summarize, A-  is a solution of (4.17), recalling that the pressure, the stream 
function, is related through (4.10), 

p ,  = (Z-f)A-. (4.18) 

We have found that the strong constraining influences of the Ekman suction on 
the horizontal boundaries and the kinematic boundary condition on the obstacle 
surface lead to particular forms for the pressure stream function in r > a (equation 
(4.7)) and in r < a, over the top of the bump (equation (4.18)). Requiring that there 
be no vortex stretching to O(e), the vertical velocity pumped out of the Ekman layers 
convects the mean density gradient to balance the convection of baroclinic density 
perturbations due to the thermal wind. 

5. The viscous shear layer 
The outer flow examined in $$2 and 4 is structurally quite different inside and 

outside the cylinder r = a which circumscribes the obstacle. The two solutions (4.7) 
and (4.18) must be joined somehow at the common boundary, r = a .  Choosing 
continuity and differentiability of p ,  on r =  a gives four conditions on three 
dependent variables, A + ,  A- ,  and $, so the solution is overdetermined. To resolve the 

1 FLM 206 
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matter, i t  is necessary to investigate the viscous shear layer that straddles r = a. 
Actually, two such layers are possible. A ‘buoyancy layer ’ discussed by Barcilon & 
Pedlosky (1967) has width E5 and is appropriate only for obstacles with vertical 
sides; here we have already supposed If’(a)l < 00, so this layer does not occur. A layer 
of width Ei occurs here. We write 

p = - z+&p (5.1) 

in order to allow the layer to smooth the jump in p1 that will always occur across 
r = a (cf. (2.18)).  Writing the other variables as 

with r - a  = (Eih)i(5, and substituting into (2.1)-(2.3) gives the shear-layer equations 

(5.3) 

(5.4) 

(5 .5)  

Matching these solutions to those of 992 and 3 leads to boundary conditions on the 
solutions to (5.3)--(5.6),  

B+0, m+0, 1[1+0O, (5.7 a )  

u + It1 + > (5.76) 

P+P,l,=,, 151 + (5 .7c )  

Boundary conditions on z = 0 and z = 1 arc determined by matching solutions of 
(5.3)-(5.6) to the Ekman layers on those boundaries. Substitution into (4.1) yields 

z =  1, i z = 0,(5 > 0, 
av - 
a t = O  On 

which may be integrated once, and in the light of (5.7a), becomes 

z =  1, 
z = 0 , t  > 0. 

? i = O  on (5.8) 

On the surface z =f ,  z =!’(a) (E:h)f[ so, to leading order, the surface is on z = 0 if 
f ’ (a)  is finite. The kinematic condition (4.3) is still valid, so 

u=O on z = O , t < O .  

From this result, (5.3) shows that B = ~ ( ( 5 )  on z = 0, [ < 0. The volumetric flow rate 
in the Ekman layer on the surface in 6 < 0 is O(E5) and is proportional to t&=o,5<o, 
by (4.14). Since this flux must integrate over (0,27c) in 0 to be zero, B = 0 is required 
and hence (5.8) is supplemented by 

v = O  on z = O , t < O ,  (5.9) 
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but leaves open the question of what happens precisely at  E = 0. Notice that 
integration of (5.4) in fl  across the layer, and use of matching conditions (5.7) and 
boundary condition ( 5 . 8 ~ )  gives 

(5.10) 

where the [ ] notation is defined by 

[Z] = zlr=a+ - ZI,=,-. 

Evaluating (5.10) at z = 0 and noting from (5.8b) and (5.9) that B = 0 in 6 < 0 and 
6 > 0 on z = 0, one concludes that B in fact must be singular a t  6 = 0. Thus, we 

1 (5.11) 

replace (5.8) and (5.9) with 
R = O  on z = 1 ,  

where 6(E) is the Dirac delta function in this instance. The solution to (5.3)-(5.6) 
under (5.7) and (5.11) is not easy, and we proceed to certain solution properties. 

R=" p1 3 z=oW on z = OJ 

5.1. Solution properties 

Appropriate solutions to the shear-layer equations do not exist unless p1 and u1 at  
r = a+ exhibit some particular properties. These constraints on p1 and u1 a t  r = a 
result in the proper conditions for joining the solutions to (4.8) and (4.17), and hence 
amount to solvability conditions on the asymptotic structure. The particular 
technique used here of utilizing certain integrals of the equations of motion in the 
shear layer was first employed, to the knowledge of this author, by Stewartson 
(1966), and since used by other workers in rotating flows; particularly notable in this 
connection is the paper by Moore & Saffman (1969 b) .  In the latter paper, no unique 
solution to the inviscid outer flow could be obtained without appeal to conservation 
of mass - much like the argument leading to Property 2 below. The best detailed 
discussion of the technique is found in Moore & Saffman ( 1 9 6 9 ~ ) .  

1.  Continuity of u1 at z = 1 

Integrate (5.3) in 6 across the layer. Making use of ( 5 . 7 ) ,  

(5.12) 

But (5.11) indicates B = 0 on z = 1. Thus, (5.12) gives the result that 

[ul] = 0 at z = 1. (5.13) 

2. Constancy of vertical volume flow rate 

Integration of (5 .5)  across the layer (in [) gives, on requiring R and its derivatives to 
vanish, by (5.7) for 161 + 00, 

which indicates that, in particular, 

J -m  J -'x 

(5.14) 

3-2 
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Since w = O(Ei) here and the layer has width Ei, the upward flow is O(E$ (or O(E)) ,  
which is the order of the flow rates in the Ekman layers on the solid walls. In 
particular, the net radial influx of fluid into the shear layer a t  z = 1 is found by 
subtracting expressions (4.12) inside and outside of the layer. So, the net outflow is 

- i W [ U 1 1  + [vl l ) lz=l~ 

This fluid must enter the shear layer a t  z = 1 ,  so it must be equal to 

J -m 

The net transport in the lower layers, using (4.12) and (4.13), is 

-$I€(.: + 2):)lz,o + A2eq. 

Again, this must be equal to 

mdt at! z = 0, 

ad6 = ++A(w:+w:-~~) rm SO 

at x = 0. Then constancy of flow rate, (5.14), gives 

[vJlz-l + (u: + 2): - Aq)l,=, = 0. 

(5.15) 

(5.16) 

(5.17) 

3. Global energy conservation 
Note that (5.6) may also be integrated across the layer. That results in 

If this is applied directly a t  z = 1 where v = 0 by (5.1 1 ) ,  then it becomes 

00 

[ p l u l ]  = /-mwdc a t  z = 1. 

However, [ul] = 0 at 1 by (5.13), and the integral is given by (5.15). Hence, 

u l [ p l ]  = -iA[vl] at z = 1.  (5.18) 

Equations (5.13), (5.17), and (5.18) constitute solvability conditions for the shear 
layer. Since ul, vl, p1 are related to p l ,  and p ,  is given by (4.7) in r > a and by (4.18) 
in r < a ,  each of these conditions may be written down in terms of A+,  q5, and A - .  
That results in 

1 :  &4+-A-+q5=0 on r = a ,  (5.19) 

2 :  

3 :  

(5.20) 

(5.21) 
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The final term in (5.20) is a measure of how interactive the solution is, since q 
depends nonlinearly upon A-  through the relation with the Prandtl boundary layer 
on the sloping surface. We conclude that hq must be small in any solution without 
such interaction. 

It is disconcerting that the shear-layer flow requires that u, be discontinuous a t  
r = a. The reason is that the requirement that whatever mass erupts into the shear 
layer at its top ( x  = 1) must leave a t  its base ( z  = 0 )  forces the vertical velocity in the 
layer to be O(d) ,  leading to 0(1) radial velocities. The u-discontinuity is, however, 
traceable to the large size of the obstacle. Were f ’  very small so that the surface 
boundary layer becomes an Ekman layer, an additional function, say $-, comes into 
the p ,  solution in r < a ,  so that continuity of the pressure and its radial derivative 
at  r = a, leading to four joining conditions, is appropriate. In  such a case, there is no 
Ekman-layer eruption into the shear layer, and the entire shear layer is much weaker 
-u l  is obviously continuous in that case. (The author is grateful to a referee for 
helping to clarify this point.) 

6. Stratification-dominated solution: h + co 
The quantity A, which in dimensional terms is given by (v/Q3)igAp*/Up,* h, will be 

large for dominant stratification effects. We note, however, from (5.20) that a large 
h the problem is highly nonlinear unless q is also small. Recall that forf’ small, (3.14) 
indicates that q = If’(a)l Q ,  so the analysis in this section is valid under stated 
restrictions in (3.16); hence we require that 

For f ’  = 0(1), it appears that the Prandtl boundary layer leads to strong 
nonlinearities, and in particular the strong possibility of separated flow. Apparently, 
if h + 1 ,  then ‘only for obstacles with small slopes is it possible to proceed with a 
solution of the sort given below. 

Letting h+co under (6.1), then (4.8) and (4.17), together with the joining 
conditions (5.19), (5.20), and (5.21), to  be applied a t  r = a become 

V2A+ = V 2 $  = 0 in r > a ,  (6.2) 

V 2 ( 1 - f ) A - = 0  in r < a ,  (6.3) 

$4+-A-+$=O on r = a ,  (6.4) 

Solution, of the Stokes-like problem, is 

r 
p l =  -2rsin0+2 

2-f 
1 - f  

p ;  = --2rsinB. 
(6.7) 

We show, in figure 2, streamlines for solution (6.7). 
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* 

FIGURE 2.  Stratification-dominated flow past a paraboloid with maximum height a. (a) Streamlines 
in the z = 0 plane. ( b )  Streamlines in the z = 4 plane. p ,  interval between streamlines is 0.25. 

The solution (6.7) actually represents the leading terms in a series of inverse 

(6.8) I A+ = A: + ( l / h ) A l +  ...) 
A- = A ; + ( l / h ) A , +  ..., 

$6 = $ l + ( l / h ) $ 2 + . . . .  

powers of A :  

Substitution of (6.8) into (4.8)) (4.17), (5.19), (5.20), and (5.21) leads to the equations 
and boundary conditions for the second-order solution, denoted by subscript 2 ; we 
omit those equations for the sake of brevity and simply give the solutions, whose 
construction is a straightforward exercise : 

?(a) 2 

A: = 4a2 [ (E) - 11 cos(28) - 2 ($) (1 + -) 4a sin (28) - 8a2 log ( r )  a - 2$2, (6.9) 
r r 

(6.10) 

$2 = &[(aP‘(a) - 12a2) cos (28) - (SaP’(a) +4a2) sin (28)] 

In this set of solutions, P(r)  is the particular solution of 

that satisfies the condition P ( a )  = 0. 
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The expansion in (6.8) for A+ is not uniformly valid for r +  co, as one may note 
from the fact that A:, in (6.9), is O(1ogr) for r + 00, whereas A:, from (6.6), is O( l / ~ ) .  
In fact, for r +  00, (4.8) becomes the Oseen equation 

(6.12) 

If X = x/A and R = r /A ,  then the solution of (6.12) that is regular in r > a is 
m 

A+ = exp ( 4 ~ )  (a, cos (no) + b, sin ( ~ o ) ) K , ( ~ R ) ,  (6.13) 

where K, is a modified Bessel function of the second kind. By matching this solution 
for R --f 0 with the expansion (6.8) for r + co, the Fourier coefficients in (6.13) may be 
determined. The result is that  the solution of (4.9), valid for R = 0(1), is 

A+ = -8 (a2 /A)  (KO(4R)+$cosBK,(4R))exp (a). (6.14) 

It is instructive to examine the form of (6.14) for R+ GO. Using the asymptotic 

n=O 

forms for the modified Bessel functions, 

r 
h 

a2 

A 
A+ =-4-(1+$cos8) exp(4(X-R)) for-+co, (6.15) 

from which i t  is obvious that the solution contains a narrow wake far downstream 
of the obstacle, aligned with the upstream flow direction. A little examination of 
(6.15) shows the wake to have thickness proportional to (Ax);, which is small 
compared with the distance from the object provided that the conditions of (6.15) are 
satisfied, viz. x 9 A. (Notice, however, that there is no wake structure in I$, so that 
on the centreline of the layer, z = $, there is no wake; forward flow in x > t means 
rearward flow in x < i.) 

7. The rotation-dominated solution: h -+ 0 
If the A-parameter is small, rotation effects dominate stratification effects. The 

limits of (4.8) and (4.17) for A+O are singular. The outer solutions are particularly 
trivial ; it is evident that 

A+ = o(l) ,  A- = o(1) for A+0, 

but I$ must be 0(1) from boundary condition (4.9). That being the case, I$ is an 
harmonic function satisfying # = 0 on r = a, from the limit of (5.19) for A + O .  Thus, 

I$ = --2sino(r-;). 

So, in the midplane, z = $, (4.7) and (7.1) indicate that the flow is the usual flow past 
a circular cylinder. 

Since the A+O limit is singular, thin shear layers exist on both sides of r = a ,  
sandwiching the layer of $4 between them. For f ’ (a )  = 0(1), (5.20) indicates that 
aA-/ar should be O( 1). Also, (5.21) gives [A]  = 0 a t  r = a inside the layers, so A+ and 
A- are of the same order of magnitude. Thus, write A- = (-32aA/f’(a))iB- and 
r--a = ( -Aa/l6j’(-a))~~,-. Equations (4.17) and (5.20) become 
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-- - -sin6 on 7- = 0. 
aB- 

ar- (7.3) 

It is easily shown that the solution to this problem develops from 6 = x to 6 = 0 or 
6 = 2x on either side of the cylinder. 

Once B- is obtained, A+ may be found from A+ = ( -32Aa/f‘(a)) iB+,  where B+ is 
a solution of a heat equation, 

in s > 0, 
aB+ VB+ 
as a% 

- (7.4) 

which is obtained from (4.8) under the scaling r -a  = a(Aa)ir+, and with the 
transformations 6 = 7+ sin 6 ,  s = 1 + cos 0. As noted above, the boundary condition 
from (5.21) is 

and, since the layers develop from 6 = n, 
R + = B -  on [ = 0  (7.5) 

B+ = 0 on s = 0, all 6. (7.6) 

A series solution for B- may be constructed, the first two terms of which are 

(7.7) 

where Y(7)  = (!)4-7-/2/6, & = Y(O), and q = $(2/97-  1 ) .  In  similar fashion, using 
(7 .5) ,  (7.4) may be solved by a series, which begins 

where the members of the error function family may be found in Abramowitz & 
Stegun (1965). 

Numerical solutions may also be obtained by standard Crank-Nicholson 
techniques. We show 7-derivatives of B+ and B- evaluated at  r+ = 0 in figure 3 ;  
boundary-layer thickness functions and are shown in figure 4. These thicknesses, 

0 

W ( r ,  B)/B-(O> 0)) d7, 1; W+(7, 6)/B+(O, 0)) d r ,  J-, 
from ( 7 . 7 )  and (7 .8) ,  begin a t  2/6 and $(ns)i near 0 = n. Recall that B+ and B- 
represent density perturbations ; their 7-derivatives are vertical shears of azimuthal 
speeds in the layers. 

8. Rotation-dominated solution past an obstacle with steep sides 
The solution given in $7 is not uniformly valid for If’(a)l+ co. In many laboratory 

situations, f’(a) may be quite large. In  addition, the author has not been able to 
construct a non-separated flow solution of the kind presented here in the casc that 
the obstacle has vertical sides. It seems likely that as If’(a)l gets progressively larger, 
the structure of the A+ and A- boundary layers alters, and the solution fails to exist, 
indicating that flow separation may, in fact, have occurred. It is, then, with a view 
toward this separation that we construct, in this section, solutions of the A-equations 
for Ai-0 andf’(a)+co. 

The slope of the obstacle comes into the problem through the boundary conditions, 
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FIGURE 3. Taylor-column surface speed on r+ = 0 and on 7- = 0 vs. distance, s, around the 
column. ha 4 1 and p = O(1). 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
S 

FIGURE 4. An integral measure of the rotational layer widths. ( a )  Inside the column, ( b )  outside 
the column. ha 4 1 and y = O(1).  
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(5.19)-(5.21), but also directly into the equation (4.17). It is this latter occurrence 
that really complicates the analysis. I n  fact, the details of the obstacle shape near 
r = a are crucial in determining the form of the A -  boundary layer there. For 
dcfinitcness, consider an obstacle which is a spherical cap. The f ( r )  appropriate to 
such a shape is given by 

where we have now written p for the value - l/f’(a). If we evaluatcf’(r), which occurs 
in (4.17), in a thin layer near r = a by writing, as in $ 7 ,  r - a  = ST-, then it becomes, 
for S + 0, 

f ( r )  = -a + ~az(pz + 1)  - r2+, (8.1) 

--a 
(8.2) [ p2az - 2a.q- 61;. f‘(r) - 

Now, depending on the relative size of p2 and the layer thickness S, f’ takes on quite 
a different form so far as the boundary-layer approximation to (4.17) is concerned. 
Noting the boundary condition (5.20), and assuming that A+ and A- are o(1) in the 
small parameters, we write A- = 8&B-. The boundary condition (5.20) then becomes, 
as h+O and p+O, 

-=-sin8 on q- = O .  (8.3) 
all- 

i3B- 

The other A- term in (5.20) is negligible only if 6 < pg. Note that (7 .1 )  has been 
employed again as well. Equation (4.17), under these limits, then becomes 

where the layer thickness turns out to be 6 = (hap/16)f. The condition mentioned 
above, below (8.3), requires that ha be small compared to pz; however, the 
requirement from (8.2) means that ha must be much less than p5, which is the more 
restrictive requirement. Therefore, (8.4) may be solved under (8.3) only if 

ha -g p5. (8.5) 

The A +  equation and boundary condition for this parameter range may be deduced 
as follows. The limit form of (5.21) under the scalings for A-  given above is simply 

B+=B- on q + = O  (8.6) 

if A +  = 8SB’. Restriction (8.5) applies to this as well. B+ obeys (7.4) with r+ = 
(r--a)/(ha/16)~ as there. Hence, though the scalings for A -  differ a bit, the solution 
described in $ 7  still applies to this case. 

8.1. p5 4 ha 4 p: 

For values of ha larger than p5, thc approximation for f ’ ( r )  in (4.17) as - l/p is no 
longer valid. In  fact, in this case the 2aSy- term in (8.2) now dominates. That being 
the case, we still write A -  = MB-, but now 6 is given by S = (h2a/128)5. The limit of 

I 

(4.17), noting (7.2), is then 
i3B- 86- lB-- = -. 1 

( - l l - ) S  ae all2 

Provided that ha is small compared with pg, boundary condition (5.20) remains (8.3) 
in the limit. The B+ equation and boundary condition continue to be given by (7.4) 
and (8.6) respectively. However, the B+ solution is now certainly different since the 
value of B- on 7- = 0 is now changed. 
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0 0.5 1 .o 1.5 2.0 

FIGURE 5. Taylor-column surface speed on v+ = 0 and pn 7- = 0 us. distance, s, around the 
column. ,u5 < Aa + ,us. 

S 

The solution to (8.7) under (8.3) may be expanded in a series away from 8 = x as 

(8.8) 

The boundary condition requires that Fb(0) = FI(0) = 1.  The equation for Fo(z) is 

(8.9a) given by 

in $6. That series begins as 

B- = - (x - 0) Fo( -T,I-) +;(. - 8)3 Fl( -T,I-) + . . . . 

and the Fl equation is 
(8.9b) 

Solutions are difficult, but it is easily shown that, for z+O, 

Fo = c , - z + + z ~ c ; +  ..., 

Fl = c , -z++z~c ,c ,+  ..., 

and, for z+ CQ, at  the edge of the layer, 

Fo w 152-6 ; Fl - c ~ z - ~ ,  b = +(4111/6-1) .  

The constants cl,  c2, and c3 are not arbitrary. In fact, integrating (8.9) across the 
boundary layer gives the integral conditions 

lom Fi/z i  dz = 1, lom Fo Fl/$ dz = 3. 

(cl, c2, c3)  are related to these constraints. Obviously the B+ solution proceeds in much 
the same fashion here as in $7 .  The result is a solution that is very like (7.8), with 
constants c1 and c2 appearing as multipliers on the terms. Numerical solutions for 
(7.4) and (8.7) are shown in figures 5 and 6, namely, 7-derivatives of B+ and B- on 
1 = 0, and ‘thicknesses’, as discussed at the end of $7 .  
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FIGURE 6. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

s 

An integral measure of the rotational layer widtks. (a )  Inside the column, 
the column. p5 < ha 4 p:. 

outside 

For ha of order pg and larger, the boundary condition (5.20) has a limit different 
from (8.3), viz. 

B-=-s in8  on q - = O .  (8.10) 

Up to values of ha of the order of p2, however, the boundary condition (5.21) is 
modified, and the analysis is quite different. We proceed to  that case. 

8.2. pg << ha << pz. 
In this range, we write 

A' = 8pB+, A- = 8pB-, 18.11) 

and the interior boundary layer, owing to the change in scale of A-,  now has a 
thickness given by S = (h2a/( 1 2 8 ~ ~ ) ) : .  The equations for B+ and R- remain (7.4) and 
(8.7) respectively, and B- satisfies (8.10) on q- = 0. However, (5.21) in this limit 
becomes 

aB+ I-$ 
B + = 1 - s + 2 p 2  on f l = O ,  

P a 5 + ( 2 S - , S z ) t  
(8.12) 

where p = ( h a ) ~ / ( l 6 p ) ,  which is small in the parameter range. 
Since p is o ( l ) ,  the limit of (8.12) is simply 

B+ = [2s-s2]4 on 6 = 0. (8.13) 

The solution may proceed in series expansion for B+ in powers of s; or it may be done 
numerically. The B+ problem, (7.4) and (8.13), is clearly well-posed and there is no 
difficulty in completing the solution. However, close inspection of (8.12) shows that 
things are not so straightforward as they seem. Equation (8.13) is not the uniformly 
valid limit of (8.12) for p+O. There is a non-uniformity in the neighbourhood of 
s = 1 where the first derivative term in the boundary condition must be retained. In 
that small region near s = 1, write 

B+ = l+b(z, y), f l =  (d2p)5y, s =  1+(1/2p)Qz. (8.14) 



Rotating stratijied flow past a steep-sided obstacle 

The limit of (7.4) and (8.12) as p+O then gives 

-xb on y=O.  
ab _ -  
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(8.15) 

(8.16) 

Matching carefully to the solution to (7.4),  (8.13) that is valid to left, right, and above 
this region, we conclude that b + O  for x2+y2+ 00. 

Now, clearly this problem is not well-posed. Here, we demonstrate the consequent 
non-uniqueness of the solutions of (8.15), (8.16), by construction of an eigenfunction. 
Generalizing the Laplace transformation, if the integration path is the imaginary 
axis in the t-plane, one solution to (8.15), (8.16) is 

b = exp (tx+@-tiy) dt. L (8.17) 

Any multiple of this solution is also a solution. r may be deformed for convenience 
so long as x > larg tl 2 $T, since a branch line lies on the negative real axis. Deforming 
the contour round the branch cut, 

b = Iom ecrz sin (3; + riy) dr  in x > 0 (8.18) 

and using argt = k i n  for x < 0, we may also find 

b = lam exp ($m - $iy) sin (Zr; - $riy + q r x  + 5.) dr  in x < 0. (8.19) 

Steepest-descent techniques may be applied to the integral (8.17); there are two 
critical points, but with the t-plane cut as indicated above, only one lies in (-n, n) 
- one on the positive real axis. Deforming the r-contour to pass through that point 
gives the asymptotic form of b for 1x1 and/or y large, viz. 

b - [E(r-$x)]enp [-+(T-+X)~ (r+ax)], (8.20) 

where r = (&+ix.");. Specializing, 

b - ( -xn)~exp(~x3) ,  x+-co, 

and b-$n(b)fexp[-($y)i], y+m, x = O ( l ) .  

So, in this parameter range, there is a tiny region near s = 1 in which the B' 
problem is ill-posed. As p grows, the trouble moves upstream from s = 1 toward 
s = 0. 

The difficulty in this parameter range is worse than that, however, since inspection 
of (8.10) together with (3.17) shows that the boundary layer under the inner (B-) 
shear layer is mathematically identical to the classical boundary layer on a circular 
cylinder in a potential flow, i.e. the fluid will separate from the surface in this narrow 
region under the shear layer - even though the B- solution, itself, is well-behaved. It 
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is, in fact, the change in the B- boundary condition from (8.3) to (8.10), for slopes 
larger than (ha)-:, that leads to the separation under the shear layer. Hence, in the 
parameter range at hand, separation occurs in a thin region round the rim of the 
bump, as a small zone of non-uniqueness develops just outside the column. One 
would anticipate, then, in this regime, that the entire solution structure is incorrect. 
Clearly the B- solution and its boundary layer must be found interactively, with 
apparently some effect on the B+ layer in the shoulder region. It seems that no 
massive separation, round all of the column, occurs a t  these slopes - perhaps it does 
a t  larger slopes. 

To summarize the analysis of this section, we have found that for steep-sided 
obstacles, all of the vertical shear is confined in thin layers sandwiching the Ei layer 
on r = a. As the slope, fl(a), continues to increase, the structure of the layers alters 
through several regimes, until f ( a )  is of order (ha)-;, beyond which trouble first 
develops in the outer layer, in the form of non-uniqueness in the solution near the 
obstacle shoulders and the separation of the boundary layer under the interior shear 
layer. 

Further investigation of the detailed nature of the separated flow, as well as 
numerical solutions for h = O ( l ) ,  await a subsequent paper. 

This material is based upon work supported by the National Science Foundation 
under grant number ATM-8417646. The author is particularly grateful to three 
referees for their comments on earlier versions of this paper. 
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